Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rui Zhao, ${ }^{\text {a }}$ Yuan-Fu Deng, ${ }^{\text {a }}$
Zhao-Hui Zhou ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *
${ }^{\text {a }}$ State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.062$
$w R$ factor $=0.161$
Data-to-parameter ratio $=12.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Pentapotassium dicitrato(4-)manganate(III) pentahydrate

The centrosymmetric crystal structure pentapotassium dicitrato(4-)manganate(III) pentahydrate, $\mathrm{K}_{5}\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\left.\mathrm{O}_{7}\right)_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$, has two independent anions, both of which lie at inversion centers in the triclinic unit cell. The Mn atoms are $O, O^{\prime}, O^{\prime \prime}$-chelated by the citrate entity and the six O atoms surrounding each Mn atom constitute an octahedron. The K atoms interact with the anions and the water molecules, leading to the formation of a network structure that also features extensive hydrogen bonding.

Comment

The citrate ion, in the form of its transition-metal derivatives, has been extensively studied, and for the Mn-citrate system in particular, the synthesis has been investigated in order to understand the influence of pH on the nature and composition of the product. At a pH of $1.5-3.0$ and in the presence of ammonium hydroxide, Mn^{2+} reacts with citric acid to form neutral $\left[\mathrm{Mn}^{\mathrm{II}}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}\right)_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Deng et al., 2003), whereas at a pH of 7 , the reaction yields $\left(\mathrm{NH}_{4}\right)_{4}\left[\mathrm{Mn}^{\mathrm{II}}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2}\right]$, the ammonium counter-ion being incorporated into the crystal structure in this example. On the other hand, at a somewhat higher pH of 8 , the Mn^{3+} product, $\left(\mathrm{NH}_{4}\right)_{5}\left[\mathrm{Mn}^{\mathrm{III}}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{7}\right)_{2}\right]$-$2 \mathrm{H}_{2} \mathrm{O}$ (Matzapetakis et al., 2000) could be isolated. The use of potassium hydroxide as the base in place of ammonium hydroxide furnishes the corresponding pentapotassium manganate(III) complex, (I), at pH 9 , and it crystallizes with five water molecules per. The potassium cation is able to bind to more water molecules than the ammonium cation; this feature has also been observed for the related citratovanadates $(\mathrm{V}), \mathrm{K}_{2}\left[\mathrm{VO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}\right)\right]_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{VO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}-\right.\right.$ $\left.\left.\mathrm{O}_{7}\right)\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Zhou et al., 1995), and $\mathrm{K}_{4}\left[\mathrm{VO}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}\right)\right]_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{NH}_{4}\right)_{4}\left[\mathrm{VO}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}\right)\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Tsaramyrsi et al., 2001; Velayutham et al., 1998).

The Mn atom is $O, O^{\prime}, O^{\prime \prime}$-chelated by the $\left[\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{7}\right]^{4-}$ ion, which uses two carboxyl and the alkoxyl O atom to bond in a fac manner (Fig. 1 and Table 1). The two independent Mn atoms both lie at inversion centers. The negative charge of the anion is balanced by five potassium cations, but the stability of

Received 22 July 2003
Accepted 23 July 2003
Online 31 July 2003

Figure 1
ORTEPII (Johnson, 1976) plot of the two symmetry-independent dicitratomanganate(III) ions and the water molecules, with displacement ellipsoids drawn at the 75% probability level. The K^{+}ions have been omitted. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 2-y, 2-z$.]
this salt is better explained in terms of stabilization by the lattice water molecules, which form extensive hydrogen bonds (Table 2), as well as interacting with the potassium ions.

Experimental

Manganese(II) dichloride ($0.99 \mathrm{~g}, 5 \mathrm{mmol}$) and citric acid monohydrate ($2.10 \mathrm{~g}, 10 \mathrm{mmol}$) were dissolved in water (10 ml). Aqueous potassium hydroxide was added in drops until the solution registered a pH of 9.0. The solution was filtered and the filtrate was set aside for several days to allow the brown crystals to separate from solution. IR $(\mathrm{KBr}): v_{\mathrm{as}}\left(\mathrm{CO}_{2}\right)$ 1637, 1593; $v_{s}\left(\mathrm{CO}_{2}\right) 1403,1379 \mathrm{~cm}^{-1}$.

Crystal data

$\mathrm{K}_{5}\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{7}\right)_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=716.70$
Triclinic, $P \overline{1}$
$a=6.8304$ (4) \AA
$b=9.2270(5) \AA$
$c=20.197$ (1) \AA
$\alpha=78.294$ (1) ${ }^{\circ}$
$\beta=82.734(1)^{\circ}$
$\gamma=74.892(1)^{\circ}$
$V=1199.7$ (1) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.984 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3636 \\
& \text { reflections } \\
& \theta=2.3-28.3^{\circ} \\
& \mu=1.51 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Plate, brown } \\
& 0.19 \times 0.19 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.711, T_{\text {max }}=0.942$
7084 measured reflections

> 4168 independent reflections
> 3444 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.024$
> $\theta_{\max }=25.0^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-10 \rightarrow 8$
> $l=-24 \rightarrow 22$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.161$
$S=1.15$
4168 reflections
337 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Mn1-O1	1.979 (3)	Mn2-O8	1.976 (3)
Mn1-O3	2.174 (3)	Mn2-O10	2.216 (3)
Mn1-O5	1.872 (3)	Mn2-O12	1.870 (3)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\text {i }}$	180	$\mathrm{O} 8-\mathrm{Mn} 2-\mathrm{O} 8^{\text {ii }}$	180
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3$	88.5 (1)	$\mathrm{O} 8-\mathrm{Mn} 2-\mathrm{O} 10$	87.0 (1)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 3^{\text {i }}$	91.5 (1)	$\mathrm{O} 8-\mathrm{Mn} 2-\mathrm{O} 10^{\text {ii }}$	93.0 (1)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 5$	84.2 (1)	$\mathrm{O} 8-\mathrm{Mn} 2-\mathrm{O} 12$	84.2 (1)
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O}^{\text {i }}$	95.8 (1)	$\mathrm{O} 8-\mathrm{Mn} 2-\mathrm{O} 12{ }^{\text {ii }}$	95.8 (1)
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 5$	86.7 (1)	$\mathrm{O} 10-\mathrm{Mn} 2-\mathrm{O} 10^{\text {ii }}$	180
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {i }}$	180	$\mathrm{O} 10-\mathrm{Mn} 2-\mathrm{O} 12$	86.3 (1)
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 5^{\text {i }}$	93.3 (1)	$\mathrm{O} 10-\mathrm{Mn} 2-\mathrm{O} 12^{\text {ii }}$	93.7 (1)
$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{O} 5{ }^{\text {i }}$	180	$\mathrm{O} 12-\mathrm{Mn} 2-\mathrm{O} 12^{\text {ii }}$	180

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 2-y, 2-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \cdot$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots 5^{\text {i }}$	0.98	2.00	2.919 (6)	157
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 9^{\text {iii }}$	0.98	1.95	2.902 (5)	165
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 1 w$	0.99	2.14	2.830 (6)	125
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 11^{\text {iv }}$	0.97	2.22	2.828 (5)	120
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 12^{\text {ii }}$	0.97	2.13	2.992 (5)	148
$\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O} 4$	0.97	1.92	2.828 (6)	153
$\mathrm{O} 4 w-\mathrm{H} 4 w 2 \cdots \mathrm{O} 3 w$	0.97	2.56	2.903 (7)	101
$\mathrm{O} 5 w-\mathrm{H} 5 w 1 \cdots \mathrm{O} 2$	0.98	1.82	2.792 (6)	171
$\mathrm{O} 5 w-\mathrm{H} 5 \mathrm{w} 2 \cdots \mathrm{O} 11^{v}$	0.98	2.06	2.822 (6)	134

The C -bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation. The positions of the water H atoms were generated by HYDROGEN (Nardelli, 1999) but these were not refined. The displacement parameters of all H atoms were set to 1.2 times $U_{\text {eq }}$ of their parent atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the Ministry of Science and Technology of China (G1999022408) and the University of Malaya for supporting this work.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Deng, Y.-F., Zhou, Z.-H., Wan, H.-L. \& Ng, S. W. (2003). Acta Cryst. E59, m310-m312.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Matzapetakis, M., Karligioano, N., Bino, A., Dakanali, M., Raptopoulou, C. P., Tangoulis, V., Terzis, A., Giapintzakis, J. \& Salifoglou, A. (2000). Inorg. Chem. 39, 4044-4051.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

metal-organic papers

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tsaramyrsi, M., Kaliva, M., Salifoglou, A., Raptopoulou, C. P., Terzis, A., Tangoulis, V. \& Giapintzakis, J. (2001). Inorg. Chem. 40, 5772-5729.

Velayutham, M., Varghese, B. \& Subramanian, S. (1998). Inorg. Chem. 37 1336-1340.
Zhou, Z.-H., Yan, W.-B., Wan, H.-L., Tsai, K.-R., Wang, J.-Z. \& Hu, S.-Z. (1995). J. Chem. Crystallogr. 25, 807-811.

